
 

Abstract 
In proteomics, a protein’s function is always 

strongly related to its structure. But, while some parts 
of a protein have a fixed definite structure, such as α-
helix, β-sheet, or coil, other parts are not associated 
with well-defined conformations. Previously, these so-
called disordered regions were not thought to have a 
specific function of their own. But, recent studies 
suggest that some disordered regions may have 
important signaling or regulatory functions. In addition, 
some critical diseases are strongly related to these 
disordered regions. Hence, prediction of these 
disordered regions is essential. In this paper, we try to 
use the support vector machine (SVM) to predict the 
disordered regions. Furthermore, this paper emphasizes 
post processing of the SVM prediction results. Two 
post-processing algorithms are introduced. These 
algorithms are used to smooth the primary results by 
SVM. Different from other studies, these smoothing 
steps are related to the neighbors’ distance to the 
candidate node. The results show that these algorithms 
can improve the prediction accuracy further by 1%.  

1. Introduction 
 
According to the central dogma of structural biology, 

the function of a protein is determined by its three-
dimensional structure. Proteins can adopt one of three 
states: fully folded, collapsed, or extended. 
Nevertheless, parts of proteins fail to self-fold into 
fixed 3D globular structure. Those which do not have a 
fixed conformation would be taken as functionless 
regions in the past views. Even so, recent studies 
proved that these regions have special functions as 
signal controlling or regulator roles and this kind of 
region is defined as “disordered region.” Disordered 
regions often contain short linear peptide motifs, and 
these regions may cause disordered proteins partial or 
wholly unstructured. Moreover, various major protein 
conformational diseases are caused by disordered 
proteins such as synuclein, Tau, and prion protein.  

The disordered regions are stored and displayed in 
several databases. The protein structure database, 
protein data bank [2] (PDB), records these structureless 
regions in its conformation files as remarks 465 which 
contain each amino acids’ position and length. The 
database of protein disorder, DisProt [3], also collected 
more than 400 disordered proteins and about 1000 
disordered regions.  

Various instruments are used to identify the 
disordered regions, such as nuclear magnetic resonance 
(NMR) [4] spectroscopy, X-ray crystallography [1] and 
circular dichroism [5]. Nevertheless, in the 
experiments, it may take much more time, money and 
manpower than using a computerized method to 
predict. 

The current trend is using machine learning 
technologies to discover the disordered regions of 
proteins. The most used models are neural networks, 
Bayesian network, and support vector machine [19]. 
By investigating the protein’s sequences and functions 
relationship, these models can make predictions of 
disordered regions. However, some limitations of 
disordered regions prediction appeared while 
predicting with these models. First, the form of 
disordered regions various which cause the prediction 
rate decreased. Next, the sample of disordered regions 
is quite few. In 2006, besides the tertiary structure 
predictions and high resolution models, the Protein 
Structure Prediction Center’s [6] CASP7 experiments 
also held a competition of disordered regions 
prediction. The predicting target proteins’ distribution 
is that 6% disordered residues and 94% ordered 
residues. In addition, the situation of disordered 
regions on N or S terminal is common and this kind of 
disordered regions is very short which less than 30 
residues. Hence, it’s not easy to predict these regions.  

In this paper we use the SVM to predict the 
disordered region of a protein. At the prediction part, 
more information is needed. Some particular amino 
acid properties are proved to be related to protein 
disordered region. We use the support vector machine 
with the above information to predict the disordered 
region of proteins. And finally, we use several post 
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processing algorithms as smoothing functions to 
improve the prediction accuracy. 

The rest of the paper is organized as follows. 
Section 2 introduces the related work. Section 3 
describes the SVM training with smoothing algorithm. 
Section 4 presents the experimental results. And 
Section 5 draws the final conclusion.  

2. Related work 
 
In the past few years, several machine learning 

models were developed to solve problems in 
bioinformatics. Especially for structural biology, by 
analyzing the protein sequence composition, numerous 
issues could be solved.  For example, protein structure 
prediction [7], solvent accessibility prediction [8], 
residue contact prediction  [9], protein subcellular 
localization prediction [10],…etc. In all the above 
predictions, few post process were taken to improve 
the prediction accuracy. Smoothing process is the most 
used method to correct the short prediction errors 
regions which perform an easy step to smooth the 
discontinuous prediction results.  

In this paper, the disordered proteins’ issue follows 
the above studies’ pattern. However, unlike protein 
structure prediction, normal physical features are not 
enough for disordered proteins prediction. The 
additional features of amino acids should also be 
provided for prediction. In the previous researches of 
disordered protein predictions, there are several 
successful works. For instance, the first study for 
disordered proteins prediction is by Williams et al. 
(1978) [11]. They noted the abnormally low 
charge/hydrophobic ratio for the two disordered 
proteins, and used this special property to predict. 
Uversky et al. [12] did the same analysis but on much 
larger set of proteins in 2000. And they made a list of 
disordered propensity for each amino acid. However, 
no post process of prediction was taken.  

In 2006, Keith Dunker et al. developed the VSL2 
[13] disordered region predictor which used an output 
smooth procedure for its prediction result. The 
smoothing algorithm is based on calculating the 
average of raw predictions for neighboring residues 
within an output window of an odd number length 61 
to remove occasional misclassifications. In that work, 
the prediction accuracy exceeds 85%.  Nevertheless, 
they did not show the smoothing effects. No 
description was made to explain the smoothing result. 
The only thing we know is that they use the average 
result within a sliding window as the central node’s 
reference. In this paper, we modify the average idea to 
a weighted reference which will be described in 
Section 3. 

Several researches also use smoothing procedure to 
remove the misclassified node. Such as IUPred [14], 
which is a web server presented a novel algorithm for 
predicting such regions from amino acid sequences by 
estimating their total pairwise interresidue interaction 
energy. In the end, the IUPred use a simple smoothing 
step to smooth some misclassified node over a window 
size of 21. Another predictor is PONDR [15] which 
measures proteins’ complexity and encodes it with 
statistic information of amino acids. Then, PONDR 
trains the neural network with these features. The 
training error of it is about 17% based on the data set 
they collected. The smoothing procedure of it is by 
averaging over sliding windows of nine amino acids. In 
particular, the PONDR wouldn’t smooth the first and 
last four sequence positions from the N- and C-
terminal. Since some short disordered regions usually 
exist in the edges of a sequence. 

The DisEMBL [16] predictor introduced a new idea 
to predict the protein disordered regions by a simple 
concept of “hot loops” which indicate the structure 
coils with high temperature factors. The DisEMBL 
also refer to the PONDR’s smoothing algorithm. 
However, it did not improve the overall performance 
on their own datasets. 

In the above prediction model, the smoothing 
algorithms are of few variations and few discussions 
were made. Hence, in this paper we present two other 
improved smoothing algorithms and make a complete 
discussion on them. 

3. SVM training and smoothing algorithms 
 
3.1. Feature sets  
 

 For disordered protein prediction, basic protein 
sequence composition information is needed. 
Therefore, in the protein prediction stage, the target 
proteins’ composition should be analyzed. The first 
kind of composition information is target proteins’ 
occurrence frequencies. We developed a program with 
encoding and predicting functions. Hence, while the 
target proteins’ primary structure information is 
inputted, the 20 kinds of amino acids’ frequencies 
would be calculated as the first 20 features. 
 In advance, only frequencies feature may satisfy 
protein secondary structure prediction, but not for 
disordered proteins’ prediction. Because the 
frequencies features only provide the ensemble 
information, the individual position information is not 
concerned. Consequently, the position data also have to 
be added in the prediction program. However, only one 
target protein’s position information is not sufficient. 
Since proteins would mutate in the nature environment, 
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and we can find several closed family proteins. These 
proteins may have similar structure and functions. If all 
this kind of proteins could be collected and make an 
ensemble analysis, the position information is much 
more useful than only one protein’s position 
information.  
 Nevertheless, to describe a set of proteins’ position 
is not an easy work. In this paper, we used the position-
specific scoring matrix [17] (PSSM) which is 
performed by several steps. Firstly, by querying the 
target protein against the selected database, the most 
closed family proteins would be searched out. Next, 
considering the blind position calculation for a set 
protein is not serviceable, to perform the multiple 
sequences alignment is needed. After multiple 
sequence alignment, the position of the selected protein 
set could be calculated. The PSSM also calculate the 
log-likelihoods of the substring under a product 
multinomial distribution which is very useful for 
disordered protein prediction. 
 In our program, we calculated the PSSM by using 
the PSI-BLAST model which is download from the 
NCBI [18] website. The setting of PSI-BLAST in our 
program is listed as follows:I. Iterations:3. II. Database:  
NCBI nonredundant database. III. E-value: 10. 

According to the past studies, only sequence’s 
physical information is not sufficient. Some specific 
amino acids side chain properties should also be 
included in the prediction system. In this paper, 
because several amino acids’ side chain properties 
would affect a protein’s conformation. In this paper, 
we have collected several amino acids’ side chain 
properties. They are aliphatic, tiny, small, aromatic, 
hydropathy index (Kyte-Doolittle), polar, charged, and 
hydrophobic.  

Finally, we use the above features to train the SVM. 
There are totally 48 features which includes 
frequencies features (20), PSSM position features (20), 
and side chain properties (8). 
 
3.2. Support Vector Machine 
 

In this paper, we use the support vector machine to 
solve the disordered problem. In the previous section, 
we performed one node with 48 features, and that 
means we can draw these nodes in a 48 dimension 
space. So that if we could find a hyperplane to separate 
these nodes into ordered and disordered classes, the 
nodes are training successfully. The SVM also could 
project these nodes into a higher dimension, and in that 
newer space another hyperplane could always be found. 
Moreover, SVM is based on the SV (support vector) 
learning. That means the SVM would not always 
compare the prediction target to all the existing 

training nodes. In contrast, the SVM selects several 
nodes as its SVs, and use these SVs to judge the 
prediction target to be ordered or disordered. 

In the testing stage, the SVM model would use the 
SVs to do the prediction. And also, these SVs would 
locate on the maximum margin of separation. The 
SVM is also rated an excellent classifier in practical 
applications. The SVM can handle more complex 
nonlinear problems. Fig. 1 demonstrates the maximum 
margin between two classes which are separated by the 
hyperplane in the SVM model. The H1 and H2 are the 
boundaries. And the nodes which are located on these 
two lines would be support vectors. 

  
Figure 1. The SVM could find out the maximum margin and 
use the SVs to predict the prediction targets. The line H1 and 
H2 are located on these SVs. (doubled circles are SVs). 
 
    The “maximum margin” or “optimal separation” 
idea comes true with several steps. Assume that there 
are l nodes and each node contains two parts ( xi , yi ) 
where xi represents the node’s feature vector, and the yi 
shows its class (1 or -1). H1 and H2 are the two 
boundaries of the “maximum margin” in (1)  

 
     The SVM uses the Lagrangian to solve this 
constrained optimization problem. Eq. (2) 
demonstrates it. The αi is the Lagrangian multiplier. To 
adjust each node’s α value for optimization is the main 
task.  In the end, those nodes with nonzero αi are the 
support vectors. To identify the class of each node, a 
decision function is used.  

 
3.3. Datasets  
 

Our ordered and disordered sequence is collected 
from the DisProt [3] and PDB [2] database. The 
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proteins in DisProt are all with disordered regions. The 
number of ordered regions is very few. If we use the 
SVM with these disordered data, this may cause the 
unbalanced training problem. Hence we also collect 
proteins from the PDB which contains much more 
ordered regions. Those data selected from DisProt are 
taken as positive training data, and the negative 
training data are derived from PDB_Select_25 [17] 
which is a nonredundant dataset of the Protein Data 
Bank (PDB). Finally, 119 protein sequences are 
collected and there are totally 21676 residues. 
 
3.4. Smoothing Algorithm  
 
 After predicting by SVM model, the result would 
be saved in our program. In Fig. 2, one can easily find 
that some predicted disordered region is not continues. 
According to the disordered regions’ characteristic, it 
is not possible for only one or two residues to form a 
disordered region except for the edge regions. Hence, 
we develop two smoothing algorithms to recover these 
discontinued regions.  
 
 
 

 
 
Figure 2. The prediction result contains discontinued regions 
which should be smoothed. 
 
Algorithm 1: the disordered-density algorithm 
 Steps: 1. Calculate the neighbors’ disordered 
frequencies of the central node. 2. Divide the above 
frequencies value by the window size. 3. If the quotient 
is great than the threshold, then the central node should 
be set to disordered, and vice versa. 
 The above algorithm is based on the idea that 
discontinued disordered/ordered regions should be 
smoothed. This idea is realized by inspecting the 
neighborhood’s disordered/ordered residues 
distribution. In other words, by using the sliding 
window with a fixed size, the central residue’s 
disordered/ordered state should reference to its 
neighbors’ disordered/ordered density. If the 
disordered density is greater than the threshold which 
is predefined by the user (default 0.5), the central 
residue of the current window should change its states 
from ordered to disordered, and vice versa. Fig. 3 
shows the smoothing process. Because the candidate 
node in Fig. 3 is 0 (ordered) while all its neighbors are 
1 (disordered), the calculation should be (number of 
disordered) / (window size). In this example, the trend 

score of disorder is 8/9 (win size=9) which is greater 
than 0.5 (default: 0.5). Therefore, the central node 
should be set to 1 (ordered).  
 
 
 
 
 
 
Figure 3. The central node of the sliding window would be 
changed from 0 to 1, because of the vote result within the 
window. (window size=9, number of 1=8, number of 0=1) 
 
Algorithm 2: the disordered-distance algorithm 
 Steps: 1. Calculate disordered nodes’ distance 
value from the central node within the sliding window. 
2. The voting weight of each disordered node is one 
over its distance value. 3. Sum up the voting weights in 
Step 2. If the value is great than the threshold, then the 
central node should be set to disordered, and vice versa. 
  
 In the disordered-density algorithm, the residues 
within the windows have rights to vote the central 
residue’s state. When the majority is on the disordered 
side, the central residue should be disordered. 
Nevertheless, it is not fair for the residues near the 
center. Each residue within the window should not 
share a equal voting right. The residue which is farer 
away from the central residue should have a smaller 
voting weight instead of taking the same weight as the 
residues near the central residue. Therefore, this 
algorithm is named disordered-distance algorithm that 
the voting weight is inversely related to its distance to 
the central residue. Fig. 4 gives an example.  
 
 
 
 
 
 
Figure 4. The vote result of 1 is great than 0.5, hence the 
central node should be set to 1. The calculation would 
multiple each node’s distance to the central node.  

4. Experimental results  
  
4.1. Program & Experiment environment  
 

We use the C# to develop our system, and it is run 
on a PC with 1.83 core duo CPU and 2048 MB 
memory. The software that we combined in our system 
is LIBSVM [19] for SVM implementation. 
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4.2. Results 
 

Our SVM program is trained with the above 48 
features which contains frequencies features (20), 
PSSM position features (20), and side chain properties 
(8). At first, we trained and predicted the target dataset 
with the following model setting:  

Kernel: RBF kernel 
Penalty(C): 10 
Accuracy calculation:  five-fold cross-validation 

 The prediction result is 84.66%. Next, the different 
smoothing algorithms are performed. At first, we apply 
the disordered-density algorithm to the previous 
prediction. The table 1 lists different setting of 
smoothing window size and the smoothing result. 
 

Table 1. Disordered-density smoothing results 
(Threshold: 0.5  Total residues: 21676) 

Numbers of change Window 
size Accuracy Ordered to 

Disordered 
Disordered to  

Ordered 
7 84.74% 794 1590 

15 84.72% 166 331 
21 84.73% 974 2000 
31 84.76% 1240 2505 
41 84.71% 719 1478 

 Then, we changed the threshold of disordered-
density smoothing algorithm. The result is presented in 
table 2. 
 

Table 2. Disordered-density smoothing results 
(Window size: 15  Total residues: 21676) 

Numbers of change 
Threshold Accuracy Ordered to 

Disordered 
Disordered to  

Ordered 
0.1 84.90% 1690 3217 
0.3 84.99% 1892 3636 
0.5 84.73% 974 2000 
0.7 84.84% 2140 4212 
0.9 84.57% 2454 5123 

Next, we use the second smoothing algorithm, 
“disordered-distance.” Similarly, we change the 
window size first. The results show in the table 3. 

 
Table 3. Disordered-distance smoothing results 

(Threshold: 0.5  Total residues: 21676) 
Numbers of change Window 

size Accuracy Ordered to 
Disordered 

Disordered to  
Ordered 

7 84.65% 2747 5643 
15 84.68% 3356 6517 
21 84.70% 4153 7557 
31 84.69% 5165 8808 
41 84.65% 6354 10184 

 Next, we changed the threshold of disordered-
distance smoothing algorithm. The result is presented 
in Table 4. 

 
Table 4. Disordered-distance smoothing results 

(Window size: 15  Total residues: 21676) 
Numbers of change 

Threshold Accuracy Ordered to 
Disordered 

Disordered to  
Ordered 

0.1 85.27% 3024 4364 
0.3 85.31% 609 887 
0.5 85.23% 1218 1761 
0.7 85.16% 1819 2630 
0.9 85.11% 2418 3493 

 Finally, we summarized the above parameters’ 
setting, and found the optimal threshold and window 
size should be set to 0.3 and 31. The Table 5 shows the 
experiment result. 
 

Table 5. Optimal parameter setting results 
(Threshold: 0.3  Window size: 31  Total residues: 21676) 

Numbers of change Smoothing 
Algorithms Accuracy Ordered to 

Disordered 
Disordered to  

Ordered 
Disordered-

density 85.76% 331 666 

Disordered-
distance 85.29% 1773 2582 

Without 
smoothing 84.66% - - 

 
4.3. Discussion 
 

In the smoothing steps, two algorithms are 
performed with different parameter settings. In the first 
disordered-density smoothing algorithm, we can 
observe that no matter how we change the window size, 
the accuracy is still around 84.7%. It is only better than 
prediction without smoothing 0.1%. Then we change 
the threshold from 0.1 to 0.9, and the result is better 
than only change the window size. The best setting of 
the disordered-density smoothing algorithm is that the 
window size set to 31 and threshold set to 0.3. 
However, this is not a satisfied result. Therefore, we 
develop a second smoothing algorithm, disordered-
distance smoothing. 

As the parameter setting with disordered-density 
smoothing algorithm, we changed the window size of it 
in the order of 7, 15, 21, 31and 41. The result shows 
that it works the same as the previous disordered-
distance smoothing algorithm. Nevertheless, when we 
change the threshold value from 0.1 to 0.9, the 
accuracy increased to 85%. The best parameter setting 
of disordered- distance smoothing algorithm is that 
window size set to 21 and threshold set to 0.3. 

However, in the disordered-distance smoothing 
experiment with different window size, we can observe 
that the accuracy of window size 21 and 31 is almost 
the same. Therefore, we integrate the two algorithm’s 
best parameter setting. We found that the best 
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parameter setting for these two algorithms is the same 
that window size set to 31 and threshold set to 0.3. The 
Table 5 displays the optimal parameter setting 
experiment results. Specially, the disordered-density 
algorithm improves accuracy from previous 
experiment result of 84.76% to 85.76%. 

After these smoothing steps, we can improve the 
prediction accuracies by 1%. This is benefit to the final 
prediction result. In the disordered protein prediction 
studies, it’s not a easy work to improve the prediction 
result. For instance, the VSL2 predictor of DisProt 
only improves 2.1% accuracy since it uses 22 
additional features derived from the computationally 
expensive PSI-BLAST profiles (PSSM). Thus it can be 
seen that our work profit the prediction result. 

5. Conclusion 
In this paper, we use two different smoothing 

algorithms to improve the prediction accuracy of SVM 
disordered region prediction. The SVM is trained with 
48 features that we combined in our program. The 
accuracy of it is 84.66%. By performing the smoothing 
algorithm, almost 1% accuracy is improved. This could 
be helpful for the discontinued prediction result for 
different prediction models. In addition, the smoothing 
steps can be processed in linear time. No additional 
computationally expensive steps are taken. In the 
future, we will also apply structure features to improve 
the smoothing result. For example, the protein 
secondary structure information within the sliding node 
to smooth the central node. 
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